低空經濟背景下多無人機物流協同配送任務分配優化研究
首發時間:2025-10-22
艾學軼,女,副教授、碩導,主要研究方向:物流與供應鏈管理
賀禮鵬 1賀禮鵬(2000-),男,碩士研究生,主要研究方向:物流與供應鏈管理
摘要:隨著低空經濟上升為國家戰略產業,城市無人機物流配送面臨空域密集化帶來的協同調度挑戰。無人機數量的增加不僅增加了任務分配的復雜性,還導致了路徑沖突問題的加劇,進一步威脅到飛行安全與調度效率。針對這一問題,本研究提出一種融合遺傳算法與Q-learning強化學習的混合智能優化框架(GA-QL)。該框架通過雙目標優化模型,在滿足實際約束條件下,同步優化配送完成時間和路徑沖突點數量。在算法設計層面,采用改進的PMX交叉算子和隨機擾動變異策略優化"配送中心-無人機-顧客點"的任務分配方案。創新性地引入Q-learning模塊實時監控算法收斂狀態,動態調整交叉率和變異率參數,有效避免早熟收斂問題。實驗結果表明:在多種任務分布場景下,GA-QL框架相比傳統算法在路徑沖突控制與計算效率方面均表現出顯著優勢,最高可降低適應度值8.13%。此外,通過消融實驗進一步驗證了強化學習對于遺傳算法提升的有效性,隨著問題規模的擴大,其提升效率更加明顯。
關鍵詞: 多無人機 任務分配 Q-learning 遺傳算法
For information in English, please click here
Research on task allocation optimization of multi-UAV logistics collaborative distribution under low-altitude economic background
艾學軼,女,副教授、碩導,主要研究方向:物流與供應鏈管理
He Lipeng 1賀禮鵬(2000-),男,碩士研究生,主要研究方向:物流與供應鏈管理
Abstract:With the rise of low-altitude economy as a national strategic industry, urban UAV logistics and distribution is facing the challenge of collaborative scheduling brought by the densification of airspace. The increase in the number of Uavs not only increases the complexity of task allocation, but also leads to the intensification of path conflict problem, which further threatens flight safety and scheduling efficiency. To solve this problem, this study proposes a hybrid intelligent optimization framework (GA-QL) integrating genetic algorithm and Q-learning reinforcement learning. In this framework, the delivery completion time and the number of path conflict points are simultaneously optimized by the dual-objective optimization model under the actual constraints. At the level of algorithm design, the improved PMX crossover operator and random disturbance mutation strategy are used to optimize the task allocation scheme of "distribution center-UAV-customer point". The Q-learning module is innovatively introduced to monitor the convergence state of the algorithm in real time, dynamically adjust the parameters of crossover rate and mutation rate, and effectively avoid the problem of premature convergence. Experimental results show that GA-QL framework has significant advantages in path conflict control and computational efficiency compared with traditional algorithms in various task distribution scenarios, and can reduce the fitness value by up to 8.13%. In addition, the effectiveness of reinforcement learning for genetic algorithm improvement is further verified through ablation experiments. With the expansion of problem scale, the improvement efficiency is more obvious.
Keywords: multi-UAV Assignment of tasks Q-learning Genetic algorithm
基金:
引用

No.****
動態公開評議
共計0人參與
勘誤表
低空經濟背景下多無人機物流協同配送任務分配優化研究
評論
全部評論